Drug-induced DNA hypermethylation and drug resistance in human tumors.
نویسنده
چکیده
Drug-induced DNA hypermethylation was observed to constitute one component of the response of human tumor cells to toxic concentrations of commonly used cancer chemotherapy agents. In both human lung adenocarcinoma cells (HTB-54) and human rhabdomyosarcoma cells (CCl-136), pulse exposures to the topoisomerase II inhibitors etoposide and nalidixic acid; to the antibiotic doxorubicin; to the microtubule inhibitors vincristine, vinblastine, and colchicine; to the DNA cross-linking agent cisplatinum; to hydroxyurea; and to the antimetabolites 1-beta-D-arabinofuranosylcytosine, 5-fluorouracil, 5-fluorodeoxyuridine, and methotrexate were associated with profound drug-induced DNA hypermethylation. Exposure of human T-lymphocytes (MOLT-4) to toxic pulse doses of 3'-azidodideoxythymidine was associated with similar drug-induced DNA hypermethylation. In every case, drug-induced DNA hypermethylation was observed only when the degree of DNA synthesis inhibition caused by the drug exceeded 90% and when drug levels or duration of exposure was sufficient to kill 90-100% of exposed cells. Drug-induced DNA hypermethylation was shown not to represent a tissue culture phenomenon, since it occurred in vivo during high-dose 1-beta-D-arabinofuranosylcytosine and hydroxyurea treatments in two leukemic patients. Drug-induced alterations in DNA methylation were frequently biphasic, with hypomethylation occurring at drug concentrations which produced mild DNA synthesis inhibition and which killed less than 50% of exposed cells. Exposure to the alkylating agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cyclophosphamide and to the antimetabolites 5-azadeoxycytidine and 6-thioguanine was associated with DNA hypomethylation at all studied concentrations in HTB-54 cells. Drug-induced DNA hypermethylation could be blocked by preexposure to hypomethylating agents administered at nontoxic to mildly toxic concentrations. Drug-induced DNA hypermethylation may be capable of creating drug-resistant phenotypes by inactivating genes the products of which are required for drug cytotoxicity. Perhaps paradoxically, drug-induced DNA hypermethylation may also produce a second class of drug-resistant tumor cells, characterized by overexpression of particular gene products, by potentiating the process of gene amplification.
منابع مشابه
ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells
Drug-induced aberrant DNA methylation is the first identified epigenetic marker involved in chemotherapy resistance. Understanding how the aberrant DNA methylation is acquired would impact cancer treatment in theory and practice. In this study we systematically investigated whether and how ERα propelled aberrant global DNA hypermethylation in the context of breast cancer drug resistance. Our da...
متن کاملRNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line
Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...
متن کاملThe Role of Epigenetics in Cancer Drug Resistance
Cancer is caused by aberrant genetic and epigenetic changes in genes expression. DNA methylation, histone modification, and microRNAs gene deregulation are the most known epigenetic changes in different stages of cancer. Since every tumor has its own specific epigenome, any abnormal pattern is a potential biomarker for classification of different types of tumors. Despite, tumorigenesis, abnorma...
متن کاملEpigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance.
In a model system employing Chinese hamster V-79 cells, the DNA synthesis inhibitor 3'-azido-3'-deoxythymidine (BW A509U, AZT) was shown to induce genome-wide DNA hypermethylation, low-frequency silencing of thymidine kinase (TK; EC 2.7.1.21) gene expression, and resistance to AZT. Twenty-four hours of exposure of V-79 cells to 150 microM AZT led to > 2-fold enhancement of genomic 5-methylcytos...
متن کاملHypermethylation of E-Cadherin and Estro-gen Receptor- Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients
Background: Aberrant methylation of cytosine-guanine dinucleotide islands leads to inactivation of tumor suppressor genes in breast cancer. Tumor suppressor genes are unmethylated in normal tissue and often become hypermethylated during tumor formation, leading to gene silencing. We investigated the association between E-cadherin (CDH1) and estrogen receptor-α (ESRα) gene promoter methylation a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 49 21 شماره
صفحات -
تاریخ انتشار 1989